Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Orthop J Sports Med ; 8(12): 2325967120967512, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344670

RESUMEN

BACKGROUND: Running is a common recreational activity that provides many health benefits. However, it remains unclear how patellofemoral cartilage is affected by varied running distances and how long it takes the cartilage to recover to its baseline state after exercise. HYPOTHESIS: We hypothesized that patellofemoral cartilage thickness would decrease immediately after exercise and return to its baseline thickness by the following morning in asymptomatic male runners. We further hypothesized that we would observe a significant distance-related dose response, with larger compressive strains (defined here as the mean change in cartilage thickness measured immediately after exercise, divided by the pre-exercise cartilage thickness) observed immediately after 10-mile runs compared with 3-mile runs. STUDY DESIGN: Descriptive laboratory study. METHODS: Eight asymptomatic male participants underwent magnetic resonance imaging of their dominant knee before, immediately after, and 24 hours after running 3 and 10 miles at a self-selected pace (on separate visits). RESULTS: Mean patellar cartilage thicknesses measured before exercise and after the 24-hour recovery period were significantly greater than the thicknesses measured immediately after both the 3- and 10-mile runs (P < .001). This relationship was not observed in trochlear cartilage. Mean patellar cartilage compressive strains were significantly greater after 10-mile runs compared with 3-mile runs (8% vs 5%; P = .01). CONCLUSION: Patellar cartilage thickness decreased immediately after running and returned to its baseline thickness within 24 hours of running up to 10 miles. Furthermore, patellar cartilage compressive strains were dose-dependent immediately after exercise. CLINICAL RELEVANCE: These findings provide critical baseline data for understanding patellofemoral cartilage biomechanics in asymptomatic male runners that may be used to optimize exercise protocols and investigations targeting those with running-induced patellofemoral pain.

2.
Sci Rep ; 10(1): 1870, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024873

RESUMEN

Roughly 20% of Americans run annually, yet how this exercise influences knee cartilage health is poorly understood. To address this question, quantitative magnetic resonance imaging (MRI) can be used to infer the biochemical state of cartilage. Specifically, T1rho relaxation times are inversely related to the proteoglycan concentration in cartilage. In this study, T1rho MRI was performed on the dominant knee of eight asymptomatic, male runners before, immediately after, and 24 hours after running 3 and 10 miles. Overall, (mean ± SEM) patellar, tibial, and femoral cartilage T1rho relaxation times significantly decreased immediately after running 3 (65 ± 3 ms to 62 ± 3 ms; p = 0.04) and 10 (69 ± 4 ms to 62 ± 3 ms; p < 0.001) miles. No significant differences between pre-exercise and recovery T1rho values were observed for either distance (3 mile: p = 0.8; 10 mile: p = 0.08). Percent decreases in T1rho relaxation times were significantly larger following 10 mile runs as compared to 3 mile runs (11 ± 1% vs. 4 ± 1%; p = 0.02). This data suggests that alterations to the relative proteoglycan concentration of knee cartilage due to water flow are mitigated within 24 hours of running up to 10 miles. This information may inform safe exercise and recovery protocols in asymptomatic male runners by characterizing running-induced changes in knee cartilage composition.


Asunto(s)
Cartílago Articular/fisiología , Articulación de la Rodilla/fisiología , Carrera/fisiología , Adulto , Cartílago Articular/metabolismo , Ejercicio Físico/fisiología , Humanos , Articulación de la Rodilla/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Rótula/metabolismo , Rótula/fisiología , Proteoglicanos/metabolismo , Tibia/metabolismo , Tibia/fisiología
3.
World J Orthop ; 8(9): 660-673, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28979849

RESUMEN

Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...